PROJECTION-BASED MODEL ORDER REDUCTION AND HYPERREDUCTION OF TURBULENT FLOW MODELS

Sebastian Grimberg

Farhat Research Group, Stanford University

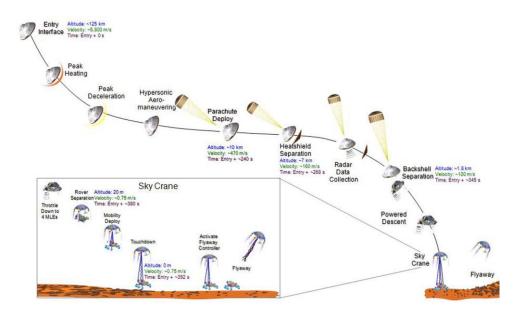
Advanced Modeling & Simulation (AMS) Seminar Series

NASA Ames Research Center

June 30, 2020

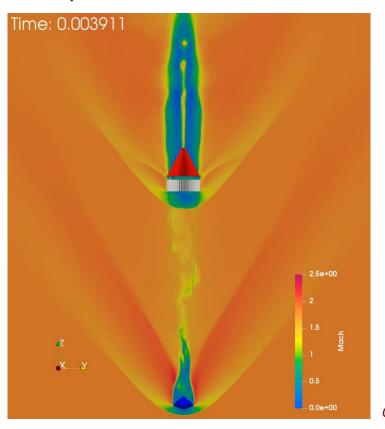
SIMULATION-BASED ENGINEERING SCIENCE

- Physics-based simulation for increasingly complex engineered systems
 - Advances in modeling, numerical algorithms, and computational resources have enabled high-fidelity simulation of realistic, large-scale problems
- A concrete example: Curiosity's "Seven Minutes of Terror" (NASA JPL, 2012)



SIMULATION-BASED ENGINEERING SCIENCE

- Physics-based simulation for increasingly complex engineered systems
 - Advances in modeling, numerical algorithms, and computational resources have enabled high-fidelity simulation of realistic, large-scale problems
- A concrete example: Curiosity's "Seven Minutes of Terror" (NASA JPL, 2012)



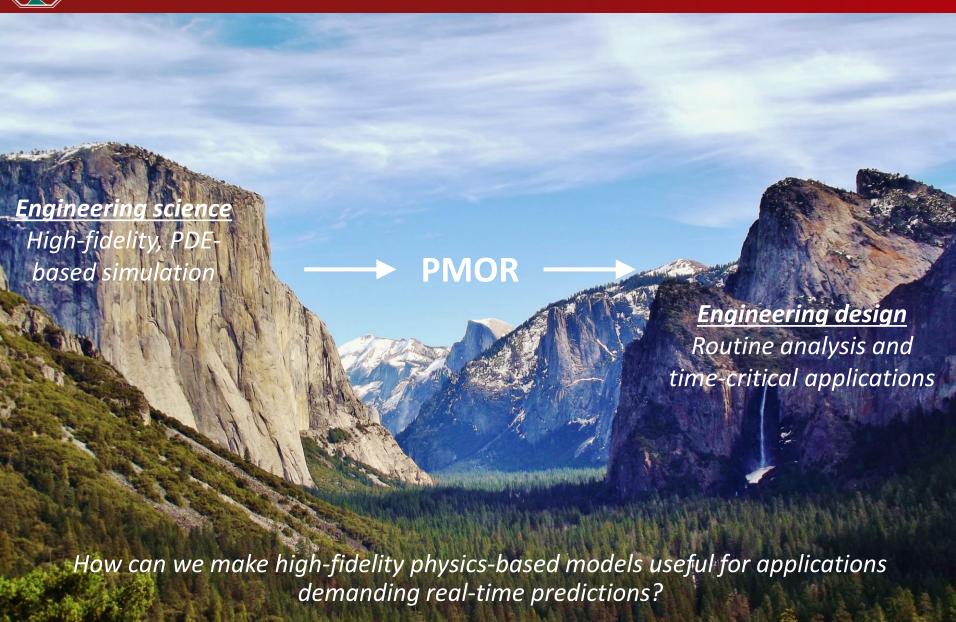
THE PERENIAL QUESTION OF COMPUTATIONAL EFFICIENCY

- Exascale computing and massive parallelism
 - Parachute simulation: 7 days on 2500 cores for 1 s of physical time

Pleiades, NASA Ames (#32 on TOP500)

Processing time issues are exacerbated in the parametric setting

PROJECTION-BASED MODEL ORDER REDUCTION



PROJECTION-BASED MODEL ORDER REDUCTION

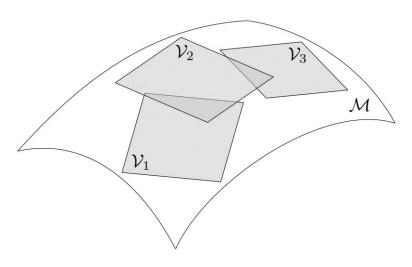
High-dimensional, nonlinear, parametric computational models

$$M(\boldsymbol{\mu})\dot{\boldsymbol{u}} + \boldsymbol{f}(\boldsymbol{u};\boldsymbol{\mu}) = 0, \quad \boldsymbol{u}(t;\boldsymbol{\mu}) \in \mathbb{R}^N, \quad \boldsymbol{\mu} \in \mathcal{P} \subset \mathbb{R}^p$$

- Prohibitively expensive to solve in many-query settings
- Solution approximation and dimensionality reduction
 - Trajectories of solutions to the *high-dimensional* model (HDM) often lie in *low-dimensional* subspaces
 - Data-driven approaches to discover *reduced-order basis* (*ROB*) for subspace

$$u(t; \boldsymbol{\mu}) \approx \boldsymbol{V} \boldsymbol{y}(t; \boldsymbol{\mu})$$

 $\boldsymbol{V} \in \mathbb{R}^{N \times n}, \quad n \ll N$



PROJECTION-BASED MODEL ORDER REDUCTION

High-dimensional, nonlinear, parametric computational models

$$M(\boldsymbol{\mu})\dot{\boldsymbol{u}} + \boldsymbol{f}(\boldsymbol{u};\boldsymbol{\mu}) = 0, \quad \boldsymbol{u}(t;\boldsymbol{\mu}) \in \mathbb{R}^N, \quad \boldsymbol{\mu} \in \mathcal{P} \subset \mathbb{R}^p$$

- Prohibitively expensive to solve in many-query settings
- Solution approximation and dimensionality reduction
 - Trajectories of solutions to the *high-dimensional* model (HDM) often lie in *low-dimensional* subspaces
 - Data-driven approaches to discover *reduced-order basis* (*ROB*) for subspace

$$u(t; \boldsymbol{\mu}) \approx \boldsymbol{V} \boldsymbol{y}(t; \boldsymbol{\mu})$$

 $\boldsymbol{V} \in \mathbb{R}^{N \times n}, \quad n \ll N$

Projection-based reduced-order model (PROM) $oxed{W}^T oldsymbol{M}(oldsymbol{\mu}) oldsymbol{V}} \dot{oldsymbol{y}} + oxed{W}^T oldsymbol{f}(oldsymbol{V} oldsymbol{y}; oldsymbol{\mu})} = 0$ $oxed{M}_n(oldsymbol{\mu})$

- **Divide and conquer:** offline-online decomposition to enable efficient online simulations
- Physics-based machine learning for acceleration of the HDM

OBSTACLES FOR PMOR

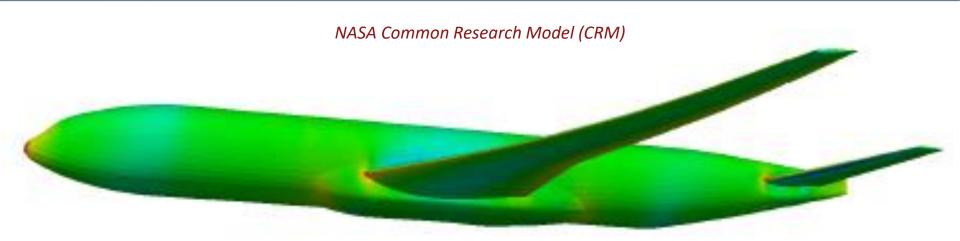
- **Cost of training** in offline stage: data collection costs from HDM and scalable algorithms for PROM construction
- Reducibility: finding accurate low-dimensional subspace approximations with n small enough for computational efficiency
- **Stability:** numerical stability of PROM operators does not necessarily follow from stability of the HDM
- Parametric dependence: implications for cost of training and reducibility
- Computational efficiency: low-dimensionality does not imply significant speedup factors for the nonlinear setting

PMOR FOR TURBULENT FLOW PROBLEMS

In the specific context of time-dependent, nonlinear, turbulent computational fluid dynamics (CFD) applications, focus on:

- I. Reducibility: Convection-dominated and multiscale solution phenomena over large spatial and temporal ranges
 - Address concerns of modal truncation leading to *numerical instability*
- II. Computational efficiency: Treatment of nonpolynomial nonlinearities in HDM for PMOR of nonlinear CFD models to eliminate computational bottlenecks
 - Ensure associated training algorithms scale to reduce the *cost of training*

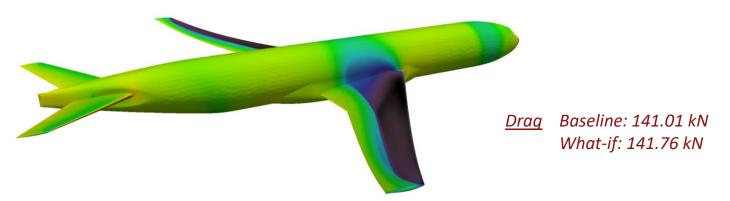
PARAMETRIC PMOR (WASHABAUGH, 2016)



PARAMETRIC PMOR (WASHABAUGH, 2016)

- Cruise conditions
 - M_{∞} = 0.85, 2.32° angle of attack, $Re = 5.0 \times 10^{6}$
- 3D steady-state RANS CFD model
 - Spalart-Allmaras turbulence model
 - Wall function
 - Unstructured mesh with 11.5M vertices

- Four-dimensional parameter space
 - Wingspan
 - Streamwise wingtip rake
 - Vertical wingtip rake
 - Outboard twist (washout)



"What-if" scenarios to pave the way for automated optimization

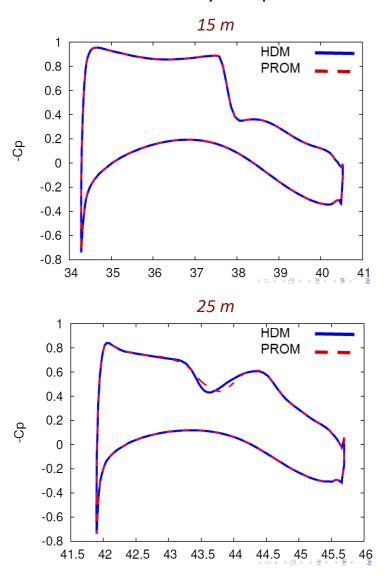
TOTAL COMPUTATIONAL OVERHEAD

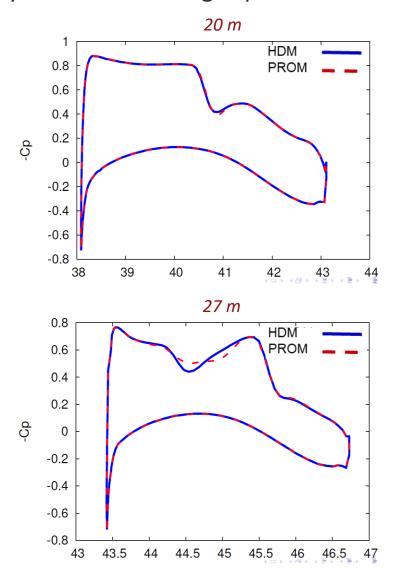
- Training on Excalibur (Cray XC40, U.S. ARL)
 - 1,024 cores assigned to each of 24 sampled configurations
 - 2 hrs wall-clock time per sampled parameter point → embarrassingly parallel
 - 14.6 min wall-clock time for constructing global ROB and PROM on 1,024 cores

Wall-clock time investment: 2 hrs on 24,576 cores + 14.6 min on 1,024 cores

ONLINE PERFORMANCE

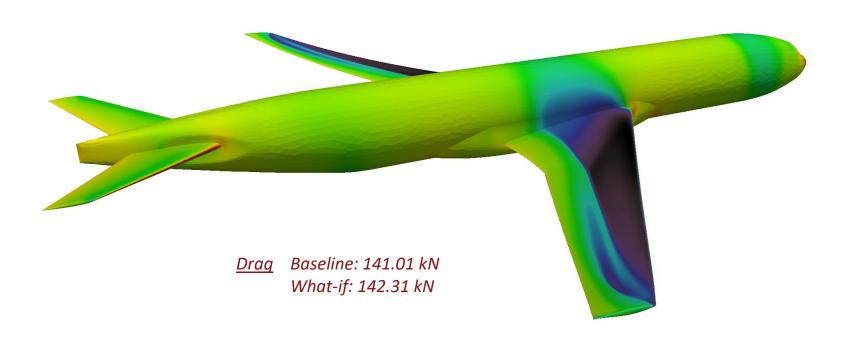
Global PROM accuracy for parameter query at center of design space





ONLINE PERFORMANCE

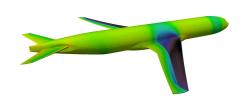
- Parameter query at center of design space
 - Near real-time prediction: PROM solution in 2.8 min on a laptop



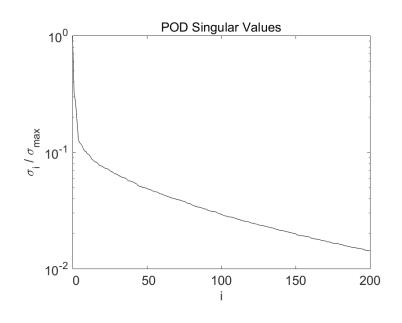
I. On Numerical Stability for Convection-Dominated Problems

NONLINEAR HYPERBOLIC PROBLEMS

- What about scale-resolving turbulent flow models?
 - Large eddy simulation (LES)
 - Direct numerical simulation (DNS)



- Convection-dominated problems → *not exactly low-rank*
 - Slow convergence of snapshot matrix singular values characteristic of slowly decaying Kolmogorov n-width of HDM solution manifold



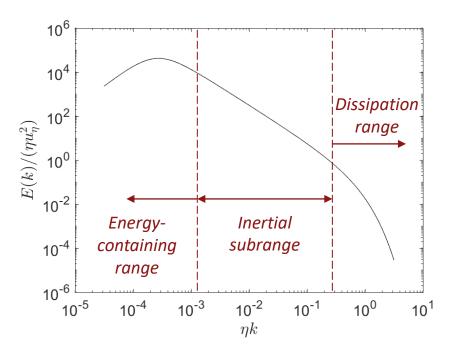
Modal truncation

$$oldsymbol{u}pprox\sum_{i=1}^n oldsymbol{V}_ioldsymbol{y}_i\quad o$$

Trade-off between large n required for accuracy, or small n for speed

TURBULENCE

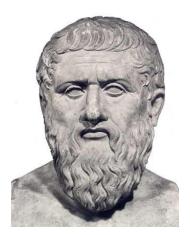
Turbulent energy cascade (Kolmogorov, 1941)



- Recurrent claim for turbulent PROMs: modal truncation eliminates viscous dissipation mechanisms and therefore artificially destabilizes the computation
 - Only supported by numerical evidence using in ALL cases PROMs based on **Galerkin projection** (left ROB W=V)
 - Here, the case is made that Galerkin projection is to blame for instability, rather than physical cascade argument

PMOR AS A SEMI-DISCRETIZATION METHOD

- "We do not learn, and that what we call learning is only a process of recollection"
- PMOR is a *Ritz method* (1909) where the global basis functions are constructed *a posteriori* after some knowledge about the parametrized system is developed, instead of being selected *a priori* → *learning vs. postulation*



Plato

SEMI-DISCRETIZATION FOR CONVECTION-DOMINATED FLOW PROBLEMS

Consider the linear advection-diffusion equation

$$\begin{cases} \dot{u} + \nabla \cdot (\boldsymbol{a}u - \nu \nabla u) = f & \text{in } \Omega \times [0, T] \\ u = 0 & \text{on } \Gamma_g \times [0, T] \\ u(\boldsymbol{x}, 0) = u_0 & \text{in } \Omega \end{cases}$$

ullet Error estimate for Galerkin finite element method with standard polynomial approximations of order k

$$\|\nabla(u - u_h)\|_{L^2(\Omega)} = O((1 + Pe_h)h^k)$$
Instability

- Streamline-upwind *Petrov-Galerkin* (SUPG) method (1982)
 - Use different test/trial function spaces to achieve numerical stability

PETROV-GALERKIN PROJECTION

- Right (test) ROB V is constructed for optimal accuracy, left (trial) ROB W enforces uniqueness of the solution as well as any desired additional constraints
- In the linear case: Petrov-Galerkin projection to ensure PROM satisfies Lyapunov stability criterion for LTI systems (Amsallem and Farhat, 2012)
- In the nonlinear case: *time-discrete residual minimization*

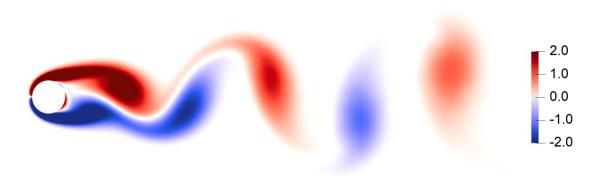
$$\mathbf{W}^T \hat{\mathbf{r}}(\mathbf{V} \mathbf{y}^{m+1}, t^{m+1}; \boldsymbol{\mu}) = 0 \quad \Leftrightarrow \quad \mathbf{y}^{m+1} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \|\hat{\mathbf{r}}(\mathbf{V} \mathbf{x}, t^{m+1}; \boldsymbol{\mu})\|_{\boldsymbol{\Theta}}$$

- 1. $m{W} = m{V}
 ightarrow m{Galerkin}$ projection: $m{\Theta} = (m{J}^{m+1})^{-1}$, only if inverse of Jacobian is symmetric positive definite (SPD)
- 2. $oldsymbol{W} = oldsymbol{\Theta} oldsymbol{J}^{m+1} oldsymbol{V} \; o \; extit{ extit{Petrov-Galerkin}} \; ext{projection: equivalence for any SPD} oldsymbol{\Theta}$
- $oldsymbol{\Theta} = I
 ightarrow extbf{Least-squares Petrov-Galerkin (LSPG):}$ Gauss-Newton method for nonlinear least-squares

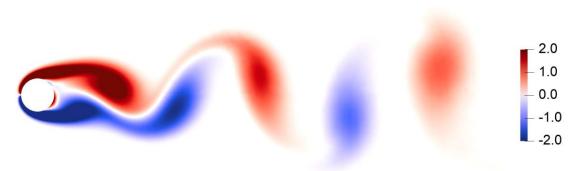
SUPPORTING NUMERICAL EXAMPLES

- Several numerical examples demonstrate falseness of the truncation-based instability claim
 - Example #1: Galerkin PROMs unstable even in the absence of turbulence for convection-dominated problems
 - Example #2: Galerkin PROMs stable even with severe modal truncation when non-convection-dominated
- Petrov-Galerkin PROMs using the LSPG projection will be shown to be numerically stable (and accurate) in all cases

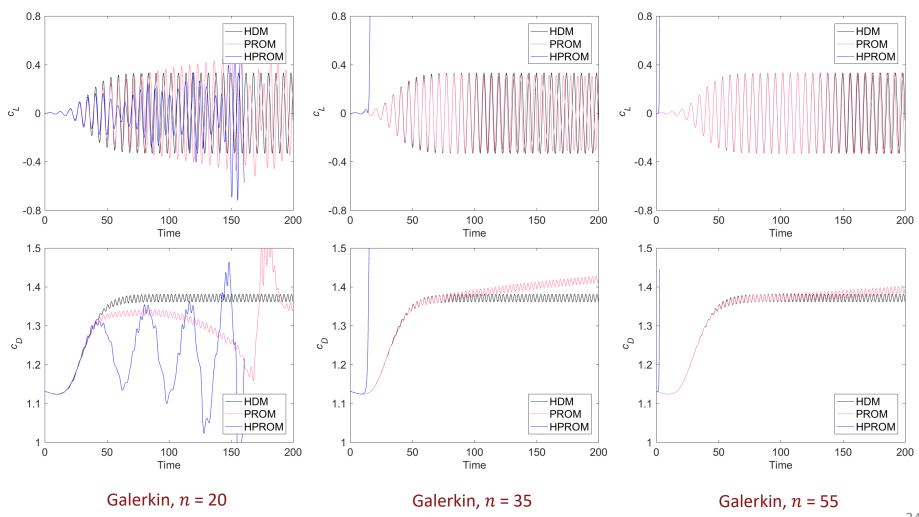
- At Re=100 and $M_{\infty}=0.2$, flow exhibits periodic vortex shedding after transient startup
 - Time integration in nondimensional time interval [0, 200], where flow becomes periodic at t = 100
- HDM characterization
 - Compressible Navier-Stokes equations semi-discretized using a second-order mixed FV/FE scheme
 - Implicit time discretization using second-order DIRK scheme
 - Resulting dimension N = 490,700



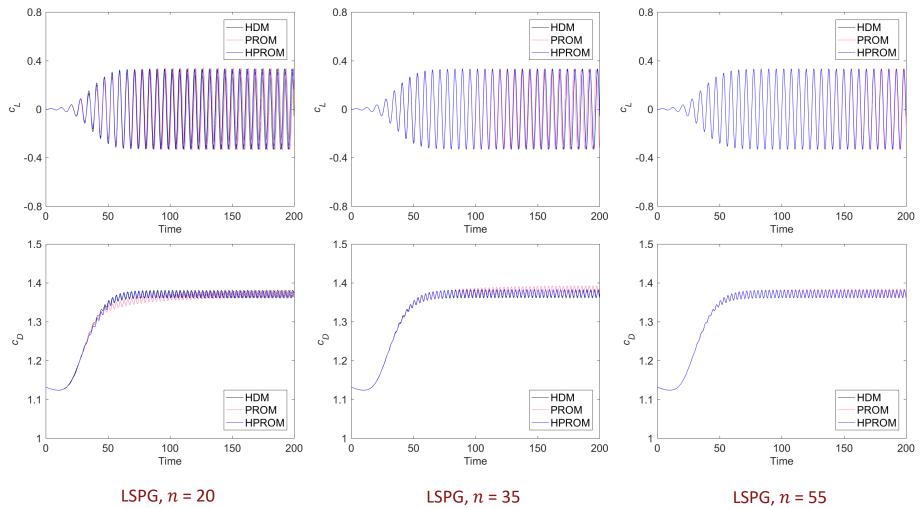
- At Re=100 and $M_{\infty}=0.2$, flow exhibits periodic vortex shedding after transient startup
 - Time integration in nondimensional time interval [0, 200], where flow becomes periodic at t = 100
- Galerkin and Petrov-Galerkin PROMs
 - Least-squares Petrov-Galerkin (LSPG) projection
 - 751 collected solution snapshots from $t \in [0, 150]$
 - 3 ROB dimensions for constructing Galerkin and LSPG PROMS: n=20,35, and 55, corresponding to 99.9%, 99.99%, and 99.999% of snapshot matrix singular value energy

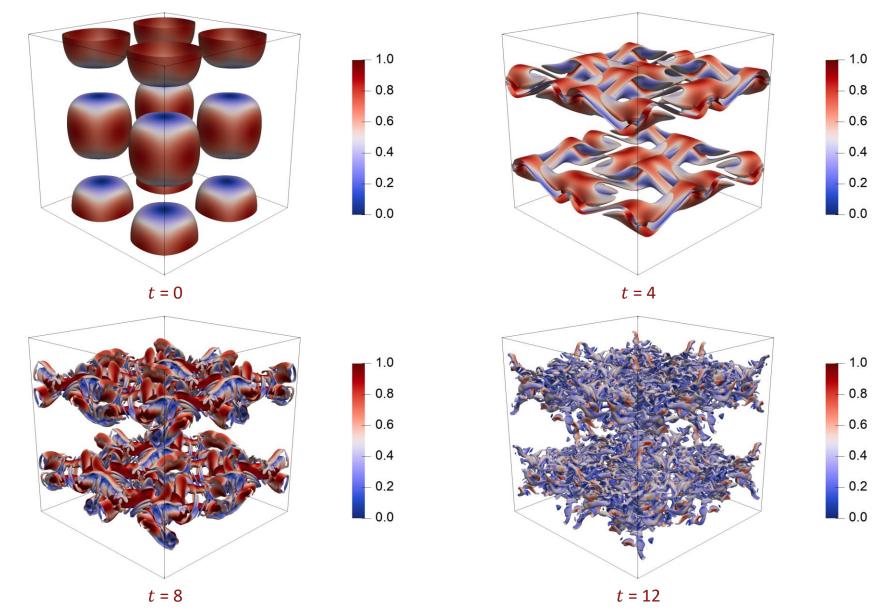


Comparison of time histories of lift and drag coefficients for Galerkin PROMs



 Comparison of time histories of lift and drag coefficients for Petrov-Galerkin PROMs



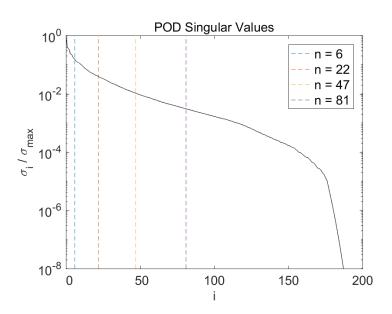


- Homogeneous, isotropic turbulence in a triply-periodic box of side-length 2π at Re=1,600
 - Canonical flow often used as benchmark problem for evaluating numerical schemes and their ability to simulate turbulence
 - In nondimensional time interval [0, 20], vortices decay into turbulence
 - *Multiscale* flow transition used to study effects of ROB truncation on PROM accuracy and stability

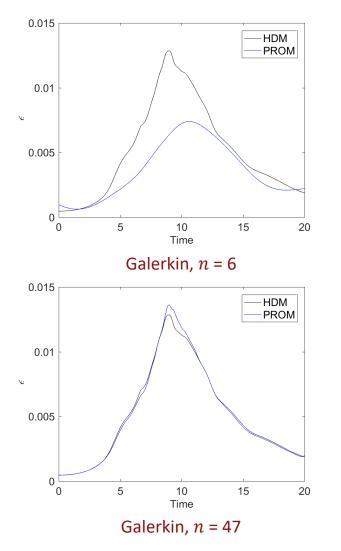
HDM construction

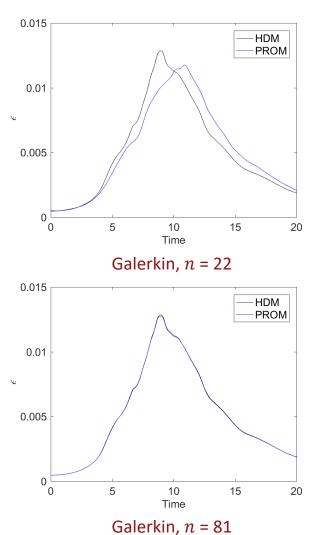
- Pseudospectral Fourier-Galerkin method for DNS of the incompressible Navier-Stokes equations
- 512 grid points per spatial direction yields *N* = 402,653,183
- Time integration using explicit RK4 for snapshot collection with nondimensional time step $\Delta t = 0.001$

- Galerkin and Petrov-Galerkin PROM construction
 - 201 solution snapshots collected at Δs = 0.1 from HDM for ROB construction via POD
 - 4 Galerkin and LSPG PROMs of dimension n=6,22,47, and 81 corresponding to energy thresholds from 90% to 99.99%
 - All PROMs employ implicit four-point BDF scheme for time discretization

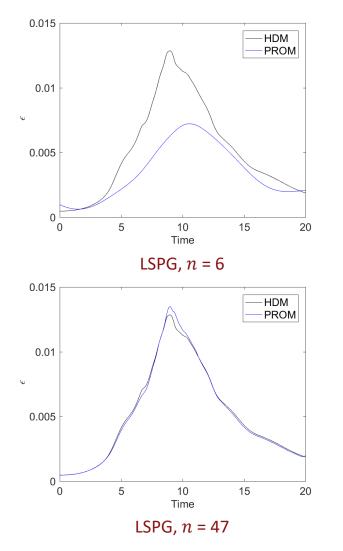


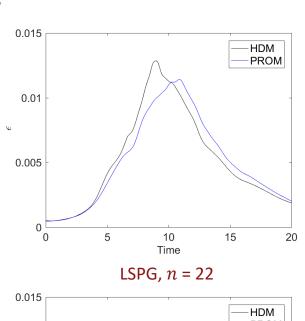
 Comparison of time histories of the enstrophy-based dissipation rate computed using the HDM and Galerkin PROMs

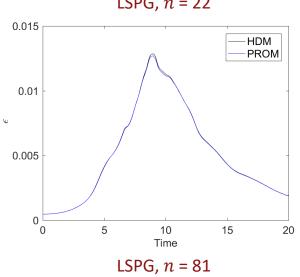




 Comparison of time histories of the enstrophy-based dissipation rate computed using the HDM and Petrov-Galerkin PROMs







- Some pertinent observations
 - Both Galerkin and LSPG PROMs deliver similar performance and are numerically stable for all values of \boldsymbol{n}
 - Very high degree of accuracy achieved for n = 81, versus HDM dimension N = 402,653,183, even for complex multiscale physics
- LSPG PROM speedup factors vs. HDM

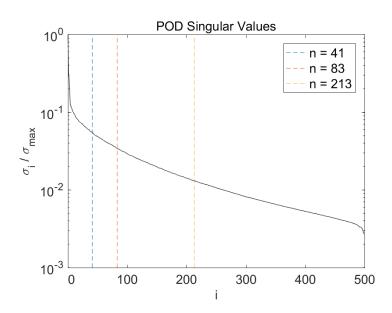
Model	n	Wall-clock time (# cores)	Wall-clock time speedup factor	CPU time speedup factor
HDM		34.9 hrs (128)	-	-
PROM	6	6.0 s (1)	21,100	2,700,000
	22	14.8 s (1)	8,480	1,090,000
	47	1.2 min (1)	1,820	233,000
	81	8.1 min (1)	258	33,100

- NACA 0012, Re = 10,000, $M_{\infty} = 0.2, 30^{\circ}$ angle of attack
 - Compute vortex shedding solution for 30 nondimensional time units
- Spatial and time discretization
 - Vreman (2004) subgrid-scale turbulence model
 - *Fifth-order* low-diffusion finite volume scheme for convective terms, *second-order* Galerkin finite element scheme for diffusive terms
 - Time discretization using *third-order* DIRK scheme
- Computational domain
 - One-chord length extrusion in spanwise direction, periodic BC on spanwise faces
 - Unstructured mesh with 2.1M vertices, 11.9M tetrahedra
 - HDM dimension *N* = 10,397,730

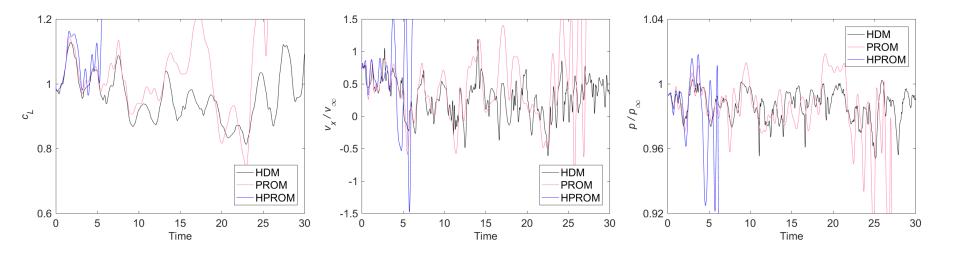
Contours of vorticity magnitude colored by Mach number

• PROM construction

- HDM solution snapshots collected at $\Delta s = 0.06 \rightarrow 501$ snapshots
- Right ROB of dimension n=83 computed via POD, corresponding to singular value energy threshold of 95%
- Galerkin and LSPG PROMs

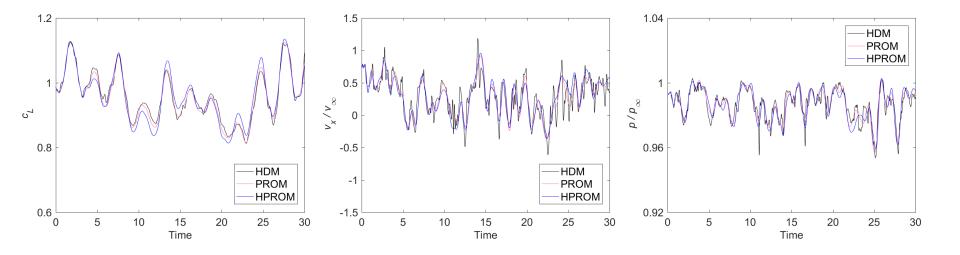


- Comparison of lift coefficient and streamwise velocity and pressure computed at a probe using the HDM and Galerkin PROM
 - Probe is located 1.5 chord lengths downstream from airfoil TE



Galerkin PROMs are numerically unstable for all considered ROB dimensions

- Comparison of lift coefficient and streamwise velocity and pressure computed at a probe using the HDM and Petrov-Galerkin PROM
 - Probe is located 1.5 chord lengths downstream from airfoil TE



 LSPG PROMs are stable, and maintain stability and accuracy when hyperreduction is introduced

SUMMARY AND CONCLUSIONS, PART I

- **Proving vs. disproving:** LSPG projection is/can be stable for nonlinear PMOR of scale-resolving turbulent flow models
 - Galerkin projection can also produce stable and accurate PROMs, but only where appropriate: not well-suited for convection-dominated problems
- *Physics vs. numerics:* explaining numerical behavior using only physics-based arguments is not necessarily justifiable and can lead to the wrong conclusions

II. Computational Bottlenecks and Hyperreduction

PROM CONSTRUCTION

Recall the semi-discrete nonlinear HDM

$$\mathbf{M}(\boldsymbol{\mu})\dot{\boldsymbol{u}} + \boldsymbol{f}(\boldsymbol{u}; \boldsymbol{\mu}) = 0, \quad \boldsymbol{u}(t; \boldsymbol{\mu}) \in \mathbb{R}^N$$

and linear (global) subspace approximation

$$\boldsymbol{u}(t;\boldsymbol{\mu}) \approx \boldsymbol{V} \boldsymbol{y}(t;\boldsymbol{\mu}), \quad \boldsymbol{V} \in \mathbb{R}^{N \times n}, \quad n \ll N$$

PROM CONSTRUCTION

Constructing a *Petrov-Galerkin PROM* of dimension n

$$m{r}(m{V}m{y},m{V}\dot{m{y}};m{\mu}) = m{M}(m{\mu})m{V}\dot{m{y}} + m{f}(m{V}m{y};m{\mu})
eq 0 \qquad \leftarrow ext{Dimension N}$$
 $m{W}^Tm{r} = 0$ $m{\downarrow}$ $m{V}^Tm{M}(m{\mu})m{V}\dot{m{y}} + m{W}^Tm{f}(m{V}m{y};m{\mu}) = 0 \qquad \leftarrow ext{Dimension n} \ll N$ $m{M}_n(m{\mu})$

- Even though PROM is low-dimensional, solution can be more expensive than the HDM!
- Polynomial nonlinearities admit precomputable decomposition

$$oldsymbol{W}^T oldsymbol{f}(oldsymbol{V}oldsymbol{y};oldsymbol{\mu}) = oldsymbol{W}^T oldsymbol{G}(oldsymbol{V}) oldsymbol{h}(oldsymbol{y};oldsymbol{\mu})$$
 precomputable

ISSUES WITH NONLINEARITY

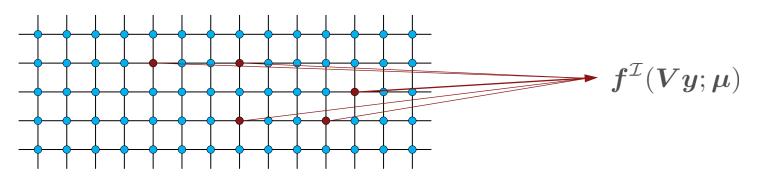
- For the general nonlinear case, solution of the PROM is *still expensive*
 - Must reconstruct high-dimensional state, compute high-dimensional nonlinear function, then project onto low-dimensional space

$$oldsymbol{r}(oldsymbol{y}, \dot{oldsymbol{y}}) \;
ightarrow \; (oldsymbol{V}oldsymbol{y}, oldsymbol{V}\dot{oldsymbol{y}}) \;
ightarrow \; oldsymbol{r}(oldsymbol{V}oldsymbol{y}, oldsymbol{V}\dot{oldsymbol{y}}; oldsymbol{\mu}) \;
ightarrow \; oldsymbol{W}^Toldsymbol{r}(oldsymbol{V}oldsymbol{y}, oldsymbol{V}\dot{oldsymbol{y}}; oldsymbol{\mu}) \;
ightarrow \; oldsymbol{W}^Toldsymbol{r}(oldsymbol{V}oldsymbol{y}, oldsymbol{V}\dot{oldsymbol{y}}; oldsymbol{\mu}) \;
ightarrow \; oldsymbol{W}^Toldsymbol{r}(oldsymbol{V}oldsymbol{y}, oldsymbol{V}\dot{oldsymbol{y}}; oldsymbol{\mu}) \;
ightarrow \; oldsymbol{W}^Toldsymbol{r}(oldsymbol{V}oldsymbol{y}; oldsymbol{\psi}) \;
ightarrow \; oldsymbol{W}^Toldsymbol{r}(oldsymbol{V}oldsymbol{y}; oldsymbol{\psi}) \;
ightarrow \; oldsymbol{W}^Toldsymbol{r}(oldsymbol{V}oldsymbol{y}; oldsymbol{\psi}) \;
ightarrow \; oldsymbol{W}^Toldsymbol{W}^Toldsymbol{W}(oldsymbol{W}, oldsymbol{W}) \;
ightarrow \; oldsymbol{W}^Toldsymbol{W}(oldsymbol{Y}, oldsymbol{W}, oldsymbol{W}) \;
ightarrow \; oldsymbol{W}(oldsymbol{W}, oldsymbol{W}(oldsymbol{W}, oldsymbol{W}, oldsymbol{W}, oldsymbol{W}(oldsymbol{W}, oldsymbol{W}, oldsymbol{W}(oldsymbol{W}, oldsymbol{W}, oldsymbol{W}, oldsymbol{W}(oldsymbol{W}, oldsymbol{W}, oldsymbol{W}, oldsymbol{W}(oldsymbol{W}, oldsymbol{W}, oldsymbol{W}, oldsymbol{W}(oldsymbol{W}, oldsymbol{W}, oldsymbol{W}, oldsymbol{W}, oldsymbol{W}(oldsymbol{W}, oldsymbol{W}, oldsymbol{W}, oldsymbol{W}(oldsymbol{W}, oldsymbol{W}, ol$$

- O(Nn) at every linearization, every time step, every new parameter query
- *Hyperreduction:* a second-layer approximation introduced to accelerate evaluation of nonlinear models
 - Remove complexity scaling with N
 - Raison d'être goes beyond just state nonlinearities: linear stochastic PROMs, nonaffine parameter dependence

HYPERREDUCTION OF NONLINEAR PROMS

- Approximate-then-project hyperreduction methods
 - Empirical interpolation approaches based on the gappy proper orthogonal decomposition (POD) method (1995)
 - Common 3-step idea:
 - 1. Compute function at only a few spatial locations:



- 2. Interpolate using empirical basis functions: $m{f}(m{V}m{y};m{\mu})pprox m{V_f}m{g}(m{f}^{\mathcal{I}})$
- 3. Compute the projected approximation: $m{f}_r = m{W}^T m{f} pprox m{W}^T m{V_f} m{g}(m{f}^{\mathcal{I}})$
- State-of-the-art for many PMOR frameworks, including CFD
- Standard implementations rely on suboptimal *greedy mesh sampling* algorithms and only consider accuracy of high-dimensional interpolation

HYPERREDUCTION OF NONLINEAR PROMS

- *Project-then-approximate* hyperreduction methods
 - Approximate the projected reduced-order quantities directly
 - Interpretation as empirical generalized quadrature rules
- Example: energy-conserving sampling and weighting (ECSW) (2014)
 - Developed for second-order finite element models in computational structural dynamics

$$\int_{\Omega} f(u)v \, d\boldsymbol{x} = \sum_{e \in \mathcal{E}} \int_{\Omega_e} f(u)v \, d\boldsymbol{x} \approx \sum_{e \in \widetilde{\mathcal{E}} \subset \mathcal{E}} \xi_e \int_{\Omega_e} f(u)v \, d\boldsymbol{x}, \quad |\widetilde{\mathcal{E}}| \ll |\mathcal{E}|$$

- Unique structure preserving and stability properties

ECSW FOR TURBULENT FLOW MODELS

- Can we generalize the ECSW method to accelerate nonlinear PROMs for CFD applications?
 - First-order systems of conservation laws
 - Arbitrary underlying semi-discretizations
 - Training algorithms for very high-dimensional problems
 - Is $|\tilde{\mathcal{E}}| \ll |\mathcal{E}|$ possible for complex, turbulent flow applications?

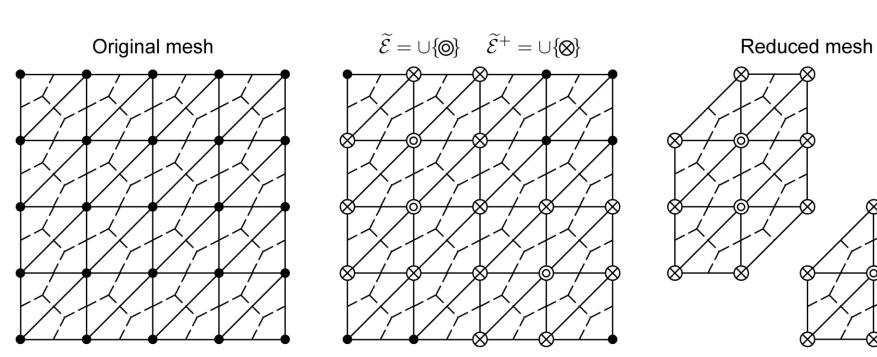
ECSW FOR TURBULENT FLOW MODELS

ECSW approximation for general Petrov-Galerkin PROMs

$$egin{aligned} oldsymbol{W}^T oldsymbol{r}(oldsymbol{V}oldsymbol{y},oldsymbol{V}\dot{oldsymbol{y}};oldsymbol{\mu}) &= \sum_{e\in\mathcal{E}} oldsymbol{W}^T oldsymbol{L}_e^T oldsymbol{r}_e(oldsymbol{L}_{e^+}oldsymbol{V}oldsymbol{y},oldsymbol{L}_{e^+}oldsymbol{V}\dot{oldsymbol{y}};oldsymbol{\mu}) \ &pprox \sum_{e\in\widetilde{\mathcal{E}}\subset\mathcal{E}} \xi_e oldsymbol{W}^T oldsymbol{L}_e^T oldsymbol{r}_e(oldsymbol{L}_{e^+}oldsymbol{V}oldsymbol{y},oldsymbol{L}_{e^+}oldsymbol{V}\dot{oldsymbol{y}};oldsymbol{\mu}) \end{aligned}$$

- $oldsymbol{L}_e$ is a boolean localization matrix to the DOFs corresponding to mesh entity e
- Computations take place on a **reduced mesh** defined by $\tilde{\mathcal{E}}$, which can represent a subset of the high-dimensional mesh elements, dual-cells, collocation points, or any required geometric entity as per the HDM semi-discretization

ECSW FOR TURBULENT FLOW MODELS



OPTIMAL SAMPLE WEIGHT COMPUTATION

- How to compute the sampled entities $\tilde{\mathcal{E}}$ and the associated weights ξ_e ?
- Consider a set of training snapshots $\{m{u}^{(i)}, \dot{m{u}}^{(i)}\}_{i=1}^{N_t}, \ m{u}^{(i)} = m{u}(t^p; m{\mu}^q)$
 - Assemble training data in matrix form representing the ${m W}^T{m r}$ operation over all N_t training samples

$$egin{bmatrix} egin{bmatrix} oldsymbol{c}_{11} & \dots & oldsymbol{c}_{1|\mathcal{E}|} \ dramptooling & \ddots & dramptooling \ oldsymbol{c}_{N_t1} & \dots & oldsymbol{c}_{N_t|\mathcal{E}|} \end{bmatrix} egin{bmatrix} oldsymbol{\xi}_1 \ dramptooling \ oldsymbol{\xi}_{e\in\mathcal{E}} oldsymbol{c}_{N_te} \end{bmatrix} &
ightarrow & oldsymbol{C}oldsymbol{\xi} = oldsymbol{d} \ oldsymbol{\xi}_{e\in\mathcal{E}} oldsymbol{c}_{N_te} \end{bmatrix}$$

Exact assembly satisfies $C1=d o ext{Find sparse set of weights s.t. } C\xi pprox d$

OPTIMAL SAMPLE WEIGHT COMPUTATION

• Computing the sample weights ξ_e via *large-scale supervised learning*

minimize
$$\|\boldsymbol{\xi}\|_0$$

subject to $\|\boldsymbol{C}\boldsymbol{\xi} - \boldsymbol{d}\|_2 \le \varepsilon \|\boldsymbol{d}\|_2$
 $\boldsymbol{\xi} \ge 0$

- ℓ^0 -pseudonorm minimization is NP-hard and thus generally intractable
- Solve instead a convex approximation which promotes sparsity: non-negative least squares

minimize
$$\|C\boldsymbol{\xi} - \boldsymbol{d}\|_2$$
 subject to $\boldsymbol{\xi} \ge 0$

equipped with an early termination criterion

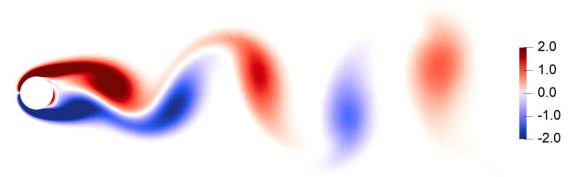
$$\|C\boldsymbol{\xi} - \boldsymbol{d}\|_2 \le \varepsilon \|\boldsymbol{d}\|_2$$

- Significant work developing solvers to deal with large problem size (storage for C quickly exceeds 1TB for problems of interest)

Performance assessment for laminar and RANS flow models

HDM characterization

- Compressible Navier-Stokes equations semi-discretized using a second-order mixed FV/FE scheme
- Implicit time discretization using second-order DIRK scheme
- Resulting dimension N = 490,700

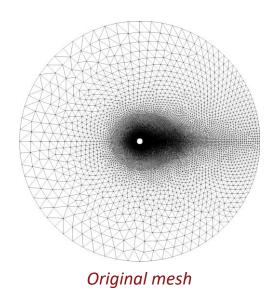


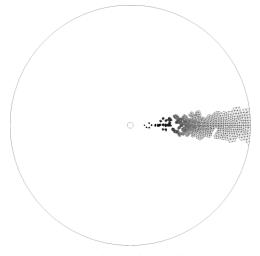
Solution vorticity snapshot

Petrov-Galerkin PROM construction

- Least-squares Petrov-Galerkin (LSPG) projection
- 751 collected snapshots from $t \in [0, 150]$ yield ROB \emph{V} of dimension $\emph{n} = \emph{35}$ using POD

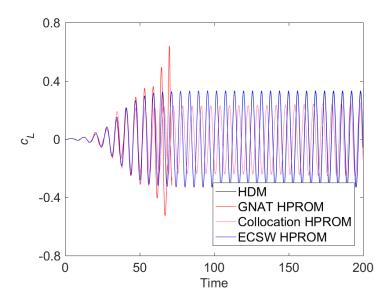
- Hyperreduction training
 - Proposed ECSW adaptation with tolerance ε = 0.01 and 376 solution snapshots, taken as every second one used for POD
 - Mesh sampling yields $|\tilde{\mathcal{E}}|$ = 376, sampled cells (0.33% of HDM mesh cells)

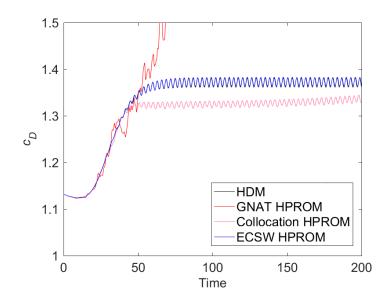




Reduced mesh

 Comparison of lift and drag coefficient time histories as computed by the HDM, ECSW-based hyperreduced PROM (HPROM), and two alternative state-of-the-art hyperreduction methods





- ECSW-based HPROMs are numerically stable and accurate, even outside of trained time interval when solution remains periodic
 - Results also hold for solution computed at probes instead of integrated quantities

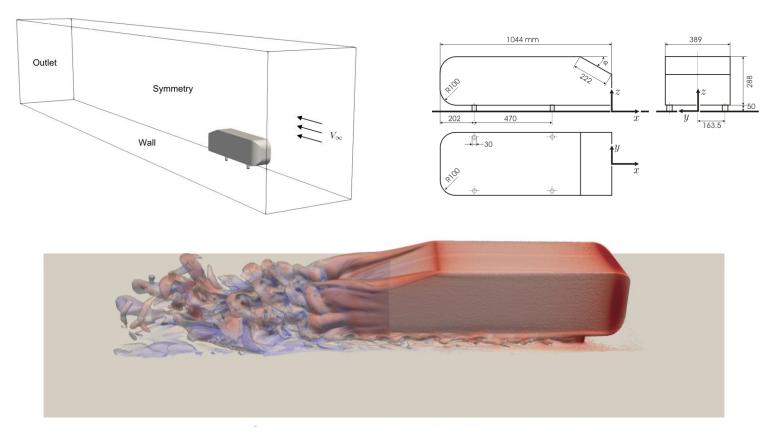
 Comparison of wall-clock times for HDM- and HPROM-based simulations (both performed on a single core)

- HDM solution: 65.4 hours

- HPROM solution: 2.8 minutes

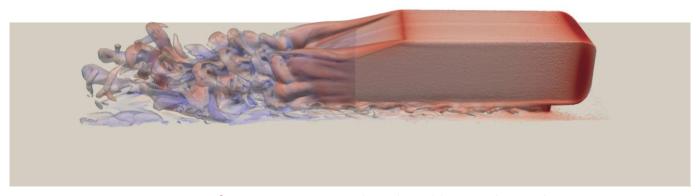
Wall-clock time speedup factor = 1,410

- Detached eddy simulation (DES) of flow past the Ahmed body geometry with slant angle = 20°
 - $Re = 4.29 \times 10^6$, $V_{\infty} = 60$ m/s
 - Common benchmark problem in the automotive industry

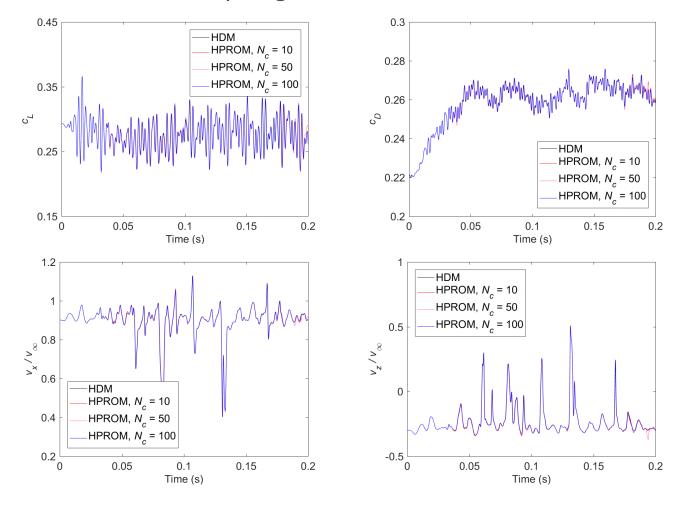


- HDM, PMOR, and hyperreduction
 - Computational domain discretized using 2.9M vertices and 17.0M tetrahedra, leads to HDM dimension N=17,342,604
 - Local subspace approximations are constructed with average dimension \overline{n} = 86, 29, and 11 (corresponding to 10, 50, and 100 local subspaces)
 - Sampled cells for ECSW-based HPROMs:

# of subspaces	$ ilde{\mathcal{E}} $	$ \tilde{\mathcal{E}} / \mathcal{E} $
10	1,620	0.056%
50	347	0.012%
100	137	0.0047%



- Comparison of lift and drag coefficient time histories and velocity computed at a probe using the HDM and each local HPROM
 - Probe is located 0.5 body lengths downstream in wake



- Comparison of wall-clock times for HDM- and HPROM-based simulations
 - HDM solution computed on 240 cores
 - HPROM solutions computed on 8 cores

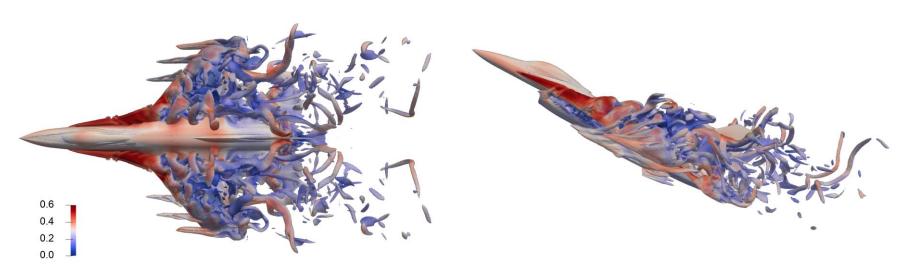
Model	# of subspaces	Wall-clock time	Wall-clock time speedup factor	CPU time speedup factor
HDM	-	12.1 hours	-	-
	10	10.4 min	70	2,090
HPROM	50	1.3 min	572	17,200
	100	36.8 s	1,190	35,600

- Unsteady flow simulation past an F-16C/D fighter jet model at 30° angle of attack
 - Freestream conditions: 10,000 ft altitude, M_{∞} = 0.3, Re = 18.2 × 10⁶
 - Complex geometry and high angle of attack results in massive flow separation and formation of turbulent vortical structures



- High-fidelity, high-dimensional flow model
 - Compressible Navier-Stokes equations, one-equation RANS turbulence model
 - Unstructured tetrahedral mesh with 26.9M vertices and 159.0M elements, resulting dimension N = 161.5M
 - Second-order implicit time integration, 100,000 time steps for \sim 1.3 s of physical time

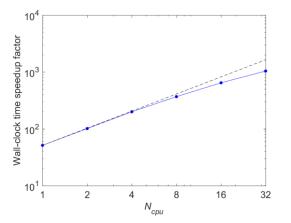
- Unsteady flow simulation past an F-16C/D fighter jet model at 30° angle of attack
 - Freestream conditions: 10,000 ft altitude, M_{∞} = 0.3, Re = 18.2 × 10⁶
 - Complex geometry and high angle of attack results in massive flow separation and formation of turbulent vortical structures



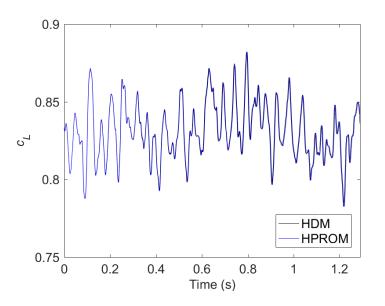
Contours of vorticity magnitude colored by Mach number

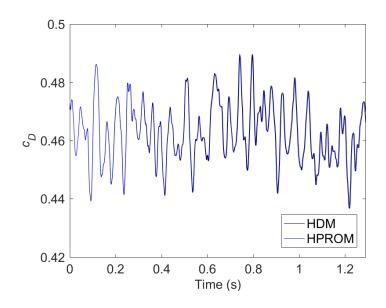
- Computational cost
 - Solution for time interval of interest *requires 100.3 hours wall-clock time* (~4 days) on 3,584 cores

- Unsteady, nonparametric PMOR
 - Collect 5001 snapshots from the HDM simulation (every 20 time steps) and construct local subspace approximation with average dimension \overline{n} = 53
 - Hyperreduction training with error tolerance ε = 0.01 yields $|\tilde{\mathcal{E}}|$ = 787 (vs. $|\mathcal{E}|$ = 26.9M \rightarrow **0.0029% of HDM mesh cells)**
 - Total training cost for subspace approximation & mesh sampling: 2.1 hours on 3,584 cores
- HPROM-based simulation performance
 - **5.8 minutes on 32 cores** → wall-clock time speedup factor = 1,040 CPU-time speedup factor = 117,000

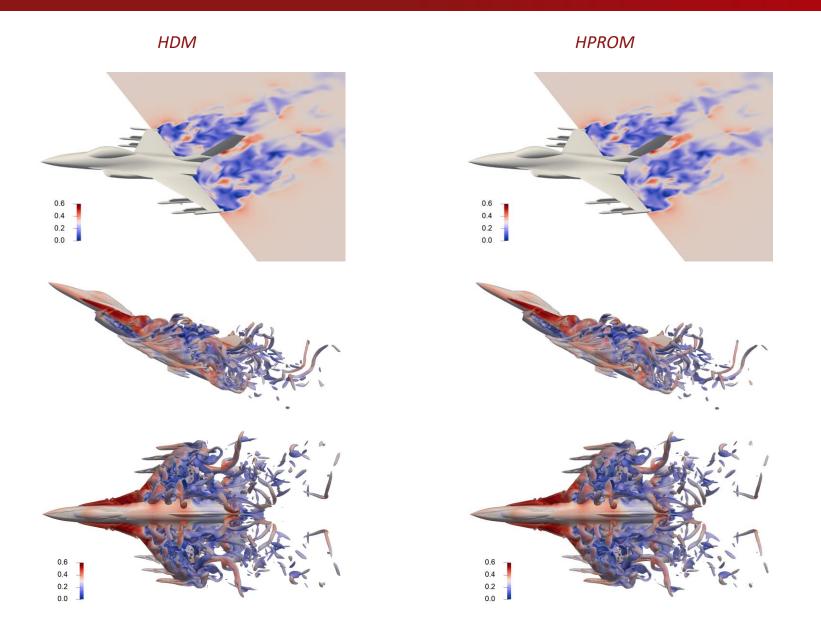


 Comparison of lift and drag coefficient time histories computed by the HDM and HPROM





 ECSW-based HPROM captures with a high-degree of accuracy the HDM solution for time interval of interest



SUMMARY AND CONCLUSIONS, PART II

- A new hyperreduction method for Petrov-Galerkin PROMs demonstrated to:
 - Outperform state-of-the-art methods for CFD models
 - Produce HPROMs for large-scale unsteady RANS-based CFD models which are both accurate and deliver large speedup factors

SUMMARY AND CONCLUSIONS

- Low-dimensional PMOR for convection-dominated and scale-resolving turbulent flow models is possible after making sure to take care of stability via the numerics
- Empirical quadrature via the ECSW method provides a practical and feasible hyperreduction framework for general nonlinear problems
- Perspectives for future work:
 - Time-dependent, parametric demonstrations with greedy adaptive parameter sampling
 - Nonlinear multiphysics applications: coupled fluid-structure interaction and embedded boundary methods

